Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 35(34)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37187189

RESUMEN

We report on systematic study of transport properties of a 1000 nm HgTe film. Unlike thinner and strained HgTe films, which are known as high-quality three-dimensional topological insulators, the film under study is much thicker than the limit of pseudomorphic growth of HgTe on a CdTe substrate. Therefore, the 1000 nm HgTe film is expected to be fully relaxed and has the band structure of bulk HgTe, i.e. a zero gap semiconductor. Additionally, the system is characterized by the bands inversion, so that the two-dimensional topological surface states (TSSs) are expected to exist. To check this claim we studied classical and quantum transport response of the system. We demonstrate that by tuning the top-gate voltage one can change the electron-dominating transport to the hole one. The highest electron mobility is found to be more than300×103 cm2 Vs-1. The system exhibits Shubnikov-de Haas (SdH) oscillations with a complicated pattern and shows up to five independent frequencies in corresponding Fourier spectra. These Fourier peaks are attributed to the TSSs, Volkov-Pankratov states and spin-degenerate bulk states in the accumulation layer near the gate. The observed peculiarities of the quantum transport are the strong SdH oscillations of the Hall resistance, and the suppressed oscillatory response of the TSSs.

2.
Sci Rep ; 12(1): 2617, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173223

RESUMEN

Quantum wells formed by layers of HgTe between Hg[Formula: see text]Cd[Formula: see text]Te barriers lead to two-dimensional (2D) topological insulators, as predicted by the BHZ model. Here, we theoretically and experimentally investigate the characteristics of triple HgTe quantum wells. We describe such heterostructure with a three dimensional [Formula: see text] Kane model, and use its eigenstates to derive an effective 2D Hamiltonian for the system. From these we obtain a phase diagram as a function of the well and barrier widths and we identify the different topological phases composed by zero, one, two, and three sets of edge states hybridized along the quantum wells. The phase transitions are characterized by a change of the spin Chern numbers and their corresponding band inversions. Complementary, transport measurements are experimentally investigated on a sample close to the transition line between the phases with one and two sets of edges states. Accordingly, for this sample we predict a gapless spectrum with low energy bulk conduction subbands given by one parabolic and one Dirac subband, and with edge states immersed in the bulk valence subbands. Consequently, we show that under these conditions, local and non-local transport measurements are inconclusive to characterize a sole edge state conductivity due to bulk conductivity. On the other hand, Shubnikov-de Haas (SdH) oscillations show an excellent agreement with our theory. Particularly, we show that the measured SdH oscillation frequencies agrees with our model and show clear signatures of the coexistence of a parabolic and Dirac subbands.

3.
Sci Rep ; 11(1): 11638, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079020

RESUMEN

In this paper, we show that electron states formed in topological insulators at the interfaces topological phase-trivial phase and topological phase-vacuum may possess different properties. This is demonstrated on an example of heterostructures based on thick topological Hg1-xCdxTe films, in which the PT-symmetric terahertz photoconductivity is observed. It is shown that the effect originates from features of the interface topological film-trivial buffer/cap layer. The PT-symmetric terahertz photoconductivity is not provided by electron states formed at the interface topological film-vacuum.

4.
Sci Rep ; 11(1): 1587, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452348

RESUMEN

We report on observation of strong non-local photoconducitivity induced by terahertz laser pulses in non-zero magnetic field in heterostructures based on Hg1-xCdxTe films being in the topological phase. While the zero-field non-local photoconductivity is negligible, it is strongly enhanced in magnetic fields ~ 0.05 T resulting in appearance of an edge photocurrent that exceeds the respective dark signal by orders of magnitude. This photocurrent is chiral, and the chirality changes every time the magnetic field or the electric bias is reversed. Appearance of the non-local terahertz photoconductivity is attributed to features of the interface between the topological film and the trivial buffer.

5.
Sci Rep ; 10(1): 2377, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047201

RESUMEN

We show that the terahertz (THz) photoconductivity in the topological phase of Hg1-xCdxTe-based structures exhibits the apparent PT- (parity-time) symmetry whereas the P-symmetry and the T-symmetry, separately, are not conserved. Moreover, it is demonstrated that the P- and T-symmetry breaking may not be related to any type of the sample anisotropy. This result contradicts the apparent symmetry arguments and means that there exists an external factor that interacts with the sample electronic system and breaks the symmetry. We show that deviations from the ideal experimental geometry may not be such a factor.

6.
J Infrared Millim Terahertz Waves ; 41(10): 1155-1169, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34721704

RESUMEN

We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency ω and momentum relaxation time τ l larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to exp ( - E 0 2 / E 2 ) , with the radiation electric field amplitude E and the characteristic field parameter E 0. As observed in experiment, it exhibits a strong frequency dependence for ω τ ≫ 1 characterized by the characteristic field E 0 linearly increasing with the radiation frequency ω.

7.
Phys Rev Lett ; 123(5): 056801, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491287

RESUMEN

Recent topological band theory distinguishes electronic band insulators with respect to various symmetries and topological invariants, most commonly, the time reversal symmetry and the Z_{2} invariant. The interface of two topologically distinct insulators hosts a unique class of electronic states-the helical states, which shortcut the gapped bulk and exhibit spin-momentum locking. The magic and so far elusive property of the helical electrons, known as topological protection, prevents them from coherent backscattering as long as the underlying symmetry is preserved. Here we present an experiment that brings to light the strength of topological protection in one-dimensional helical edge states of a Z_{2} quantum spin-Hall insulator in HgTe. At low temperatures, we observe the dramatic impact of a tiny magnetic field, which results in an exponential increase of the resistance accompanied by giant mesoscopic fluctuations and a gap opening. This textbook Anderson localization scenario emerges only upon the time-reversal symmetry breaking, bringing the first direct evidence of the topological protection strength in helical edge states.

8.
Sci Rep ; 9(1): 831, 2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696853

RESUMEN

We have measured the differential resistance in a two-dimensional topological insulator (2DTI) in a HgTe quantum well, as a function of the applied dc current. The transport near the charge neutrality point is characterized by a pair of counter propagating gapless edge modes. In the presence of an electric field, the energy is transported by counter propagating channels in the opposite direction. We test a hot carrier effect model and demonstrate that the energy transfer complies with the Wiedemann Franz law near the charge neutrality point in the edge transport regime.

9.
J Phys Condens Matter ; 30(49): 495301, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30457115

RESUMEN

Radiative recombination is studied in CdHgTe/HgTe QWs with bandgap in the 40-140 meV range using four-band Kane model. Calculated radiative lifetimes agree well with the photoconductivity kinetics measurements. We show that the side maxima in the valence band hinder the radiative recombination at high carrier concentrations and discuss how to overcome this effect for the development of long-wavelength lasers.

10.
J Phys Condens Matter ; 28(34): 345801, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27355623

RESUMEN

Low field magnetoresistance is experimentally studied in a two-dimensional topological insulator (TI) in both diffusive and quasiballistic samples fabricated on top of a wide (14 nm) HgTe quantum well. In all cases a pronounced quasi-linear positive magnetoresistance is observed similar to that found previously in diffusive samples based on a narrow (8 nm) HgTe well. The experimental results are compared with the main existing theoretical models based on different types of disorder: sample edge roughness, nonmagnetic disorder in an otherwise coherent TI and metallic puddles due to locally trapped charges that act like local gate on the sample. The quasiballistic samples with resistance close to the expected quantized values also show a positive low-field magnetoresistance but with a pronounced admixture of mesoscopic effects.

11.
Phys Rev Lett ; 116(16): 166802, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27152818

RESUMEN

We measure the quantum capacitance and probe thus directly the electronic density of states of the high mobility, Dirac type two-dimensional electron system, which forms on the surface of strained HgTe. Here we show that observed magnetocapacitance oscillations probe-in contrast to magnetotransport-primarily the top surface. Capacitance measurements constitute thus a powerful tool to probe only one topological surface and to reconstruct its Landau level spectrum for different positions of the Fermi energy.

12.
Phys Rev Lett ; 114(12): 126802, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25860765

RESUMEN

Our experimental studies of electron transport in wide (14 nm) HgTe quantum wells confirm the persistence of a two-dimensional topological insulator state reported previously for narrower wells, where it was justified theoretically. Comparison of local and nonlocal resistance measurements indicate edge state transport in the samples of about 1 mm size at temperatures below 1 K. Temperature dependence of the resistances suggests an insulating gap of the order of a few meV. In samples with sizes smaller than 10 µm a quasiballistic transport via the edge states is observed.

13.
Phys Rev Lett ; 112(19): 196801, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24877958

RESUMEN

We investigate the magnetotransport properties of strained 80 nm thick HgTe layers featuring a high mobility of µ ∼ 4 × 10(5) cm(2)/V · s. By means of a top gate, the Fermi energy is tuned from the valence band through the Dirac-type surface states into the conduction band. Magnetotransport measurements allow us to disentangle the different contributions of conduction band electrons, holes, and Dirac electrons to the conductivity. The results are in line with previous claims that strained HgTe is a topological insulator with a bulk gap of ≈ 15 meV and gapless surface states.

14.
Phys Rev Lett ; 110(7): 076805, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166393

RESUMEN

We have studied quantized transport in HgTe wells with inverted band structure corresponding to the two-dimensional topological insulator phase (2D TI) with locally controlled density allowing n-p-n and n-2D TI-n junctions. The resistance reveals the fractional plateau 2h/e(2) in the n-p-n regime in the presence of the strong perpendicular magnetic field. We found that in the n-2D TI-n regime the plateaux in resistance in not universal and results from the edge state equilibration at the interface between chiral and helical edge modes. We provided the simple model describing the resistance quantization in n-2D TI-n regime.

15.
Phys Rev Lett ; 108(22): 226804, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23003639

RESUMEN

Nonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge neutrality point in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to the edge state transport via counterpropagating chiral modes similar to the quantum spin Hall effect at a zero magnetic field and graphene near a Landau filling factor ν=0.

16.
Phys Rev Lett ; 104(16): 166401, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20482069

RESUMEN

We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximately = 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole "snake states" propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...